organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mehmet Akkurt,^a* Sema Öztürk Yıldırım,^a Shar S. Al-Shihry^b and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, College of Science, King Faisal University, PO Box 1759 Hofuf 31982, Saudi Arabia, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.041 wR factor = 0.121 Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{16}H_{14}N_4O_2$, was synthesized by the reaction of *o*-phthalaldehyde and 5-methyl-4,5-dihydro-isoxazol-3-ylamine in dichloromethane. The conformation of the molecular structure may be influenced by a weak intramolecular C-H···N interaction and weak C-H··· π

interactions, and π - π stacking interactions may influence the

2,3-dihydro-1H-isoindol-1-ylidene]amine

(5-Methylisoxazol-3-yl)[2-(5-methylisoxazol-3-yl)-

Comment

crystal packing.

A large number of isoindoline derivatives such as staurosporine, indoprofen, and pazinaclone have been reported to possess biological activities (Takahashi & Hatanaka, 1997; Kundu *et al.*, 2001; Olmo *et al.*, 2003; Takahashi *et al.*, 2004; Cul *et al.*, 2004). Compound (I) shows antifungal activity against four species: *Chrysoporium tropicum*, *Fusarium oxysporum*, *Geotrichum candidum* and *Trichoplyton rubrum* (Al-Shihry, 2005).

The molecular structure of (I) is shown in Fig. 1. All geometric parameters are in normal ranges (Allen *et al.*, 1987). Each of the individual rings is essentially planar. The isoindole system A (N1/C1–C8) is almost planar, with maximum deviations of -0.020 (2), 0.027 (2) and -0.024 (1)Å for atoms C5, C7 and C8, respectively. The five-membered isoxazole rings B (O1/N2/C9–C11) and C (O2/N4/C13–C15) make a dihedral angle of 75.35 (9)° with one another. The dihedral angles between rings A/B and A/C are 2.72 (7) and 76.59 (7)°, respectively. A weak intramolecular C–H···N hydrogen bond (Table 1) may influence the conformation of the molecular structure.

A packing diagram of (I) is shown in Fig. 2. In the crystal structure, significant π - π stacking interactions exist between five-membered rings, where $Cg1\cdots Cg3(1 - x, 1 - y, 1 - z) =$ 3.6285 (9) Å (Cg1 and Cg3 are the centroids of atoms O1/N2/C9-C11 and N1/C1/C6-C8) and the perpendicular distance is 3.49 (9) Å. These and three weak intermolecular C-H \cdots π (arene) interactions may influence the crystal packing.

Received 25 April 2006 Accepted 4 May 2006

© 2006 International Union of Crystallography All rights reserved

Z = 4

 $D_x = 1.372 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K

 $\begin{array}{c} \text{colorless} \\ 0.44 \times 0.36 \times 0.29 \text{ mm} \end{array}$

 $R_{\rm int} = 0.095$

 $\theta_{\rm max} = 26.0^{\circ}$

Prism with corners rounded,

11079 measured reflections

2807 independent reflections 2318 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_0^2) + (0.0573P)^2]$

Extinction correction: *SHELXL97* Extinction coefficient: 0.026 (3)

+ 0.1431*P*] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and H atoms drawn as small spheres.

A view of the packing of (I).

Experimental

Compound (I) was obtained by the reaction of a stirred solution of *o*-phthalaldehyde (0.5 g, 3.73 mmol) in dichloromethane (20 ml) with a solution of 5-methyl-4,5-dihydroisoxazol-3-ylamine (0.73 g, 7.44 mmol) in dichloromethane (20 ml) (Al-Shihry, 2005). Yellow single crystals of (I) suitable for X-ray crystallographic analysis were obtained by slow evaporation of the reaction mixture (yield: 0.75 g, 68%; m.p. 464 K).

Crystal d	ata
-----------	-----

$C_{16}H_{14}N_4O_2$
$M_r = 294.31$
Monoclinic, $P2_1/c$
a = 13.5698 (8) Å
b = 7.8257 (6) Å
c = 13.6527 (8) Å
$\beta = 100.690 \ (4)^{\circ}$
V = 1424.66 (16) Å ³

Data collection

Stoe IPDS-2 diffractometer ω scans Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002) $T_{\min} = 0.960, T_{\max} = 0.973$

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.041$
$wR(F^2) = 0.121$
S = 1.07
2807 reflections
202 parameters
H-atom parameters constrained

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C10-H10···N3 C2-H2···Cg2 C12-H12A···Cg4 ⁱ C16-H16B···Cg4 ⁱⁱ	0.93 0.93 0.96 0.96	2.48 2.88 2.96 2.74	2.920 (2) 3.6348 (17) 3.5516 (18) 3.5597 (18)	109 139 121 144

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y - 1, z. Cg2 and Cg4 are the centroids of atoms O2/N4/C13–C15 and C1–C6, respectively.

H atoms were placed in calculated positions and refined as riding on their parent atoms, with C–H = 0.96 (CH₃), 0.97 (CH₂) or 0.93Å (CH), and with $U_{iso}(H) = 1.5U_{eq}(CH_3)$ or $1.2U_{eq}(CH_2,CH)$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Al-Shihry, S. S. (2005). Molbank, M447.
- Cul, A., Daich, A., Decroix, B., Sanz, G. & Van Hijfte, L. (2004). *Tetrahedron*, **60**, 11029–11039.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kundu, N. G., Khan, M. W. & Mukhopadhyay, R. (2001). J. Indian Chem. Soc. 78, 671–688.
- Olmo, E., Armas, M., Ybarra, M., López, J., Oporto, P., Giménez, A., Deharo, E. & Feliciano, A. (2003). *Bioorg. Med. Chem. Lett.* **13**, 2769–2772.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.

Takahashi, I. & Hatanaka, M. (1997). *Heterocycles*, **45**, 2475–2499. Takahashi, I., Miyamoto, R., Nishiuchi, K., Hatanaka, M., Yamano, A., Sakushima, A., Sakushima, A. & Hosoi, S. (2004). Heterocycles, 63, 1267-1271.